Eigenvalues for a Neumann Boundary Problem Involving thep(x)-Laplacian
نویسندگان
چکیده
منابع مشابه
A Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملa boundary meshless method for neumann problem
boundary integral equations (bie) are reformulations of boundary value problems for partial differential equations. there is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. in this paper, the neumann problem is reformulated to a bie, and then moving least squares as a meshless method is describe...
متن کاملNonexistence and existence results for a 2$n$th-order $p$-Laplacian discrete Neumann boundary value problem
This paper is concerned with a 2nth-order p-Laplacian difference equation. By using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for Neumann boundary value problem and give some new results. Results obtained successfully generalize and complement the existing ones.
متن کاملTwo-Parameter Eigenvalues Steklov Problem involving the p-Laplacian
We study the existence of eigenvalues for a two parameter Steklov eigenvalues problem with weights. Moreover, we prove the simplicity and the isolation results of the principal eigenvalue. Finally, we obtain the continuity and the differentiability of this principal eigenvalue. AMS Subject Classifications: 35J60, 35B33.
متن کاملnonexistence and existence results for a 2$n$th-order $p$-laplacian discrete neumann boundary value problem
this paper is concerned with a 2nth-order p-laplacian difference equation. by using the critical point method, we establish various sets of sufficient conditions for the nonexistence and existence of solutions for neumann boundary value problem and give some new results. results obtained successfully generalize and complement the existing ones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematical Physics
سال: 2015
ISSN: 1687-9120,1687-9139
DOI: 10.1155/2015/632745